
Intel Architecture Software Developer’s Manual 42-59

D

D 42

42.1 DAA—Decimal Adjust AL after Addition

Description
Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is the
implied source and destination operand. The DAA instruction is only useful when it follows an
ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte
result in the AL register. The DAA instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF flags
are set accordingly.

Operation
IF (((AL AND 0FH) > 9) or AF = 1)

THEN
AL ← AL + 6;
CF ← CF OR CarryFromLastAddition; (* CF OR carry from AL ← AL + 6 *)
AF ← 1;

ELSE
AF ← 0;

FI;
IF ((AL AND F0H) > 90H) or CF = 1)

THEN
AL ← AL + 60H;
CF ← 1;

ELSE
CF ← 0;

FI;

Example
ADD AL, BLBefore: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX

After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000
DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000

After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111

Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal carry in either digit
of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according to the
result. The OF flag is undefined.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description

27 DAA Decimal adjust AL after addition

42-60 Intel Architecture Software Developer’s Manual

D

42.2 DAS—Decimal Adjust AL after Subtraction

Description
Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result. The
AL register is the implied source and destination operand. The DAS instruction is only useful when
it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed BCD value from
another and stores a byte result in the AL register. The DAS instruction then adjusts the contents of
the AL register to contain the correct 2-digit, packed BCD result. If a decimal borrow is detected,
the CF and AF flags are set accordingly.

Operation
IF (AL AND 0FH) > 9 OR AF = 1

THEN
AL ← AL − 6;
CF ← CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL ← AL − 6 *)
AF ← 1;

ELSE AF ← 0;
FI;
IF ((AL > 9FH) or CF = 1)

THEN
AL ← AL − 60H;
CF ← 1;

ELSE CF ← 0;
FI;

Example
SUB AL, BLBefore: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX

After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111
DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111

After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either digit
of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according to the
result. The OF flag is undefined.

Exceptions (All Operating Modes)
None.

42.3 DEC—Decrement by 1

Opcode Instruction Description

2F DAS Decimal adjust AL after subtraction

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1

Intel Architecture Software Developer’s Manual 42-61

D

Description
Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destination
operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (To perform a decrement operation that updates the CF
flag, use a SUB instruction with an immediate operand of 1.)

Operation
DEST ← DEST – 1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

42-62 Intel Architecture Software Developer’s Manual

D

42.4 DIV—Unsigned Divide

Description
Divides (unsigned) the value in the AX register, DX:AX register pair, or EDX:EAX register pair
(dividend) by the source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or
EDX:EAX registers. The source operand can be a general-purpose register or a memory location.
The action of this instruction depends on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than with
the CF flag.

Operation
IF SRC = 0

THEN #DE; (* divide error *)
FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;
ELSE

IF OperandSize = 16 (* doubleword/word operation *)
THEN

temp ← DX:AX / SRC;

IF temp > FFFFH
THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
FI;

FI;

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL ← Quotient,
AH ← Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16; AX ← Quotient,
DX ← Remainder

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX ← Quotient, EDX ← Remainder

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

Intel Architecture Software Developer’s Manual 42-63

D

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

42-64 Intel Architecture Software Developer’s Manual

D

